РОСТ ЭПИТАКСИАЛЬНЫХ ПЛЕНОЧНЫХ СТРУКТУР Au/Co/Au

А. Вавро¹, Л. Т. Бачевски¹, П. Панковски¹, М. Киселевски², И. Ф. Свекло³, А. Мазевски²

¹ Institute of Physics Polish Academy of Sciences, Warsaw, Poland

² Laboratory of Magnetism, Institute of Physics, University of Białystok, Białystok, Poland

³ Научно-исследовательский центр проблем ресурсосбережения НАН Беларуси, Гродно, Беларусь

Проведена оптимизация условий роста эпитаксиальных пленок Au/Co/Au с сильной перпендикулярной магнитной анизотропией. Термически индуцированное изменение морфологии пленок, определяющее их магнитные свойства, было in-situ исследовано при помощи дифракции электронов высокой энергии (RHEED) и электронной оже-спектроскопии (AES). Шероховатость поверхностей слоев золота и кобальта в зависимости от температуры отжига образца исследована ex-situ при помощи атомно-силового микроскопа (AFM) как функция размера области сканирования.

Введение

Изучение магнитных свойств поверхностей и интерфейсов является одним из наиболее важных направлений современного магнетизма. В большинстве случаев исследуются структуры с пониженной размерностью, такие как многослойные магнитные пленки. Перпендикулярная магнитная анизотропия, которая представляет большой интерес как для фундаментальных исследований, так и для практических применений (например, для устройств магнитной памяти), является характерной для структур такого типа. Поэтому система Co/Au широко исследуется с момента первого сообщения о перпендикулярной магнитной анизотропии для тонких пленок в 1986 году [1]. Тонкие магнитные пленки Со кроме перпендикулярной магнитной анизотропии также обладают рядом других свойств, зависящих от толщины пленки: коэрцитивностью, перемагничиваемостью и температурой Кюри [2–12]. При превышении критической толщины наблюдается фазовый переход второго рода, приводящий к переориентации магнитной анизотропии в плоскости пленки.

Первоначальные исследования базировались на предположении о морфологической гладкости исследуемых структур. Однако наличие шероховатости интерфейса в реальных тонких пленках может оказывать существенное влияние на их магнитные свойства. Форма и анизотропия интерфейсных слоев оказывает большое влияние на структуру пленки и ее шероховатость посредством так называемых дополнительных "магнитных полюсов". Дефекты на поверхности интерфейсного слоя могут быть центрами пининга доменных стенок, изменять механизм перемагничивания. По этой причине нахождение взаимосвязи между морфологией и магнитными свойствами пленок представляет большой интерес.

В данной работе анализируется рост Au- и Co-слоев в зависимости от типа используемой подложки. На основании данных RHEED, AES и с использованием зависимости шероховатости топографии от размера окна сканирования описываются термическииндуцированные изменения в слоевой структуре Au/Co/Au.

Методика эксперимента

Многослойные структуры Au/Co/Au выращивались в камере молекулярнолучевой эпитаксии (МВЕ) при остаточном давлении 10⁻¹⁰ торр. В качестве подложек использовались стеклянные пластины и монокристаллы кварца с ориентацией (11-20), покрытые буферным слоем молибдена. Слои Со и Мо осаждались на поверхностях подложек при комнатной температуре путем вакуумного электронно-лучевого испарения из эффузионных ячеек при скорости не более 0.5 Å/с. Нижний слой золота толщиной 200 Å был выращен непосредственно на поверхности стекла или на буферном слое молибдена (200 Å). Слои Со напылялись в виде пленок постоянной толщины либо в виде клина с переменной толщиной, полученного путем линейного перемещения подложки относительно заслонки при помощи шагового двигателя, в зависимости от требований магнитных измерений. Толщина пленок Со варьировалась от 0 до 25 Å. Верхняя пленка Аи толщиной 80 А и предохраняла слой Со от окисления на воздухе. Кристаллическая структура всех слоев во время роста контролировалась при помощи RHEED. AES использовалась для контроля химического состава пленок и для оценки диффузионных процессов во время отжига. Ex-situ AFM-измерения структуры поверхности проводились при помощи микроскопа Nanoskope-III, работающего в Tapping mode.

Результаты и их обсуждение

Рост нижнего слоя Аи сильно зависит от типа используемой подложки. Пленки Аи, осажденные непосредственно на стеклянные подложки, являются поликристаллическими, однако при их выращивании на сапфире (11-20) наблюдается эпитаксиальный рост. В последнем случае на картинках RHEED появляются четкие дифракционные полосы для всех слоев, типичные для эпитаксиального роста. Слои Мо при росте на сапфировых подложках (11-20) имеют ориентацию (110). Такая ориентация буферного слоя определяет рост пленок Au, ориентированных (111). Несмотря на большое различие постоянных поверхностных решеток (около 14%), слои Со растут эпитаксиально с ориентацией (0001). На основании наших измерений не представляется возможным отличить является ли структура Со пленки ГПУ- или ГЦК-типа. Верхняя пленка Au pacтет с ориентацией (111), подобно нижней Аи пленке. Кристаллографическая ориентация пленок в плоскости представляется следующим образом: для сапфировой подложки (11-20) / Mo(110) : [0001] || [1-1-1], Mo(110) / Au(111): [001] || [1-10], Au(111)/Co(0001): [1-10] || [11-20] и Co(0001) / Au (111): [11-20] || [1-10]. Дифракционные полосы RHEED для Мо (направления [001], [1-10] и [1-11]) и Аи (направления [1-12] и [1-10]) четкие и расстояние между ними соответствует постоянной кристаллической сети объема. Для этих слоев не наблюдается поверхностных напряжений. Слои Со, наоборот, ведут себя совсем иначе. Дифракционные пики RHEED вдоль направлений [11-20] и [1-100] размыты, и постоянная решетки изменяется с толщиной пленки Со. Благодаря сохранению кристаллической структуры и большому различию постоянных поверхностных решеток можно сделать вывод, что в пленках Со наблюдаются напряжения растяжения. Даже для 15 Å пленки Со наблюдаемая постоянная поверхностной решетки на 3% больше, чем ее величина для объема. Отжиг пленок Со при температуре 250 °С приводит к существенной релаксации напряжений.

Из-за сильного влияния морфологии пленок, определяемой условиями их роста, на магнитные свойства пленок необходимо количественное сравнение их

поверхностей. Для этой цели использована методика масштабирования аффинной фрактальной поверхности [13, 14]. Корреляционная функция g(R) для анализа шероховатости может быть представлена в аналитическом виде

$$g(R) = 2\sigma^2 [1 - \exp(-(R/\xi)^{2H})],$$

где R - линейный размер анализируемой области, σ – вычисленная шероховатость поверхности, ξ – вычисленная корреляционная длина, H – размерность Харста. Для R << ξ величина корреляционной функции может быть аппроксимирована как g(R) ~ R^{2H}. Для R >> ξ величина корреляционной функции не зависит от R и достигает насыщения $2\sigma^2$. По этой причине величина параметра ξ характеризует линейный размер островков.

Зависимость шероховатости от размера области сканирования получена из результатов AFM-измерений. AFM-изображения делились на 4, 16, 64, 256, 1024 и 4096 неперекрывающихся квадратов, и для каждого покрытия вычислялась средняя величина шероховатости. Для заданного значения R таким образом получалась зависимость g(R).

Вычисленые значения шероховатости σ и корреляционной длины ξ представлены в табл. 1. Как уже было упомянуто выше, рост пленок определялся типом подложки. Пленки Au, осажденные на стеклянных подложках, были поликристаллическими. Типичный трехмерный рост приводил к очень неровным пленкам. Последующий отжиг при температуре от 170 до 350 ⁰C приводил к увеличению шероховатости и корреляционной длины, что означает увеличение высоты и латеральных размеров островков напыленного материала.

Таблица 1. Шероховатость σ и корреляционная длина ξ для Au- и Co-пленок, отожженых при различных температурах

Т,⁰С	200 Å Au /стекло		200 Å Au /Mo buffer		8 Å Co /Au		15 Å Co / Au	
	σ, nm	ξ,nm	σ, nm	ξ,nm	σ, nm	ξ,nm	σ, nm	ξ,nm
RT	4,30	87,1	0,46	64,2	0,18	86,3	0,20	169,2
170	3,75	83,7	0,17	125,0				
200	5,13	121,2	0,19	126,6				
250					0,21	83,3	0,14	138,9
300	6.50	101.3	0.27	124.8				

Качество пленок Au существенно улучшилось при использовании сапфировых подложек, покрытых буферным слоем Mo. При напылении при комнатной температуре происходит двух- и трехмерный рост пленки Au, типичный для плоскости (111). Видны атомно-гладкие плоские островки примерно 80 нм диаметром с симметрией C₆ (рис.1). Флуктуации толщины островков составляют несколько двойных межплоскостных расстояний (111). В противоположность к пленкам Au, выращенным на стеклянных подложках, вакуумный отжиг пленок Au, осажденных на Mo- буферных слоях, значительно улучшает их морфологию. Температура 170 °C вполне достаточна для того, чтобы уменьшить шероховатость более чем в два раза (флуктуации толщины островков снижаются до толщины одного атомного слоя в данном направлении) и увеличить диаметр островков также в два раза. Отжиг при 600 °C не приводит к существенным изменениям топографии. Следует также отметить, что даже наличие небольшого клина в процессе вырезания сапфировой подложки может привести к изменению роста нижнего слоя Au – с трехмерного островкового к двумерному террасоподобному.

Напыление Со проводилось при комнатной температуре на нижний слой зо-

лота, отожженный при 200 °С. Поверхность осажденного слоя Со была островковой, подобной доотожженной структуре Au (рис. 2.) Кроме того, на AFMизображениях была видна слабая внутренняя структура. Шероховатость поверхности Со сравнима с шероховатостью отожженного слоя Au, однако по мере роста толщины пленки Со изменялась величина корреляционной длины. Для 8 Å пленки Со корреляционная длина ξ колебалась около 90 нм, в то время как для более толстых пленок (15 Å) увеличивалась до 170 нм. Отжиг при 250 °С в течение 45 мин. приводил к сглаживанию островковой структуры, однако ее остатки были виды на AFM-изображениях. Отжиг более тонких пленок Со не приводил к заметным изменениям, однако более толстые пленки Со выглаживались, что соответствует результатам [4].

Рис. 1. АFM-изображения 200 Å пленки Au после напыления на пленку Mo (слева) и после отжига при 200 °C (справа). Шкала градации серого 2 нм

Рис. 2. АFM-изображения 15 Å пленки Со после напыления на Au пленку (слева) и после отжига при 250 °C (справа). Шкала градации серого 4 нм

Дифракционные картинки RHEED позволяют контролировать наличие механических напряжений в пленках из-за несоответствия параметров кристаллических решеток пленок. Параметр поверхностной решетки свеженапыленной пленки 8 Å Со составил 2.72 Å (для сравнения объемная величина 2.51 Å). В 15 Å пленке Со происходит релаксация напряжений, в результате чего параметр поверхностной решетки составляет 2.59 Å. Отжиг при 250 0 С приводит к существенным изменениям кристаллической структуры. Для 8 Å пленки Со происходит расщепление дифракционных пиков RHEED (рис. 3), что является доказательством релаксации параметров поверхностных решеток пленок Со и Au до 2.54 Å и 2.84 Å соответственно. Для 15 Å пленки Со расщепления не происходит, в данном случае параметр поверхностной решетки Со 2.83 Å весьма близок к объемному значению Au (2.88 Å). Из результатов AES-измерений во время приготовления 15 Å Со пленок можно сделать вывод о том, что при напылении второго (защитного) слоя Au интердиффузии Со в пленку Au не происходит.

Рис. 3. Дифракционные изображения RHEED, полученные для неотожженных (слева) и отожженных при 250 °C (справа) 8 Å пленок Со. Перед отжигом полосы были размазаны, но расщеплений не видно; параметр поверхностной решетки – 2.72 Å. После отжига появилось расщепление полос с соответствующими параметрами поверхностной решетки 2.59 Å и 2.83 Å

Посокольку Au и Co взаимонерастворимы, то диффузия возможна в процессе отжига. Это может быть наиболее вероятным объяснением того факта, что после отжига тонкие пленки Co покрыты несплошной пленкой Au, а толстые пленки Co – сплошной пленкой Au. Во время отжига происходит диффузия верхнего слоя золота через пленку Co в нижний слой золота. Кроме того, происходит потеря синхронизации Au и Co слоев, приводящая к релаксации внутренних напряжений. Это находится в соответствии с изменением поверхностной морфологии после термического отжига, контролируемого RHEED и AES. Есть все основания ожидать, что отжиг существенно снижает магнетоэластичный вклад в магнитные свойства Co пленок.

Заключение

Сапфировые подложки, покрытые буферным слоем Мо, являются наиболее подходящими для выращивания структур Au/Co/Au. Термический отжиг при температуре 170 °C улучшает гладкость поверхности Au пленок и приводит к появлению атомно-гладких террас диаметром несколько сот нанометров. Неотожженные свеженапыленные пленки Со сильно растянуты, что должно приводить к существенному магнетоэластичному вкладу в их магнитные свойства. Термический отжиг приводит к релаксации внутренних механических напряжений (параметров решетки) пленок.

Литература

1. Chappert C., Dang K.L., Beauvillain P., Hurdequint H., Renard D. // Phys. Rev. B. 1986. Vol. 34,

P. 3192.

- 2. Chappert C., Bruno P. // J. Appl. Phys. 1988. № 64, P. 5736.
- 3. Bruno P., Bayureuther G., Beauvillain P., Chappert C., Lugert G., Renard D., Renard P., Seiden J. // J. Appl. Phys. 1990. № 68, P. 5759.
- 4. Speckmann M., Oepen H.P., Ibach H. // Phys. Rev. Lett. № 75. 1995. P. 2035.
- 5. Henh M., Padovani S., Ounadjela K., Bucher P. // Phys. Rev. B. 1996. Vol. 54. P. 3428.
- 6. Oepen H.P., Millev Y., Kirschner J. // J. Appl. Phys. 1997. № 81. P. 5044.
- 7. Rüdiger U., Yu J., Thomas L., Parkin S.S., Kent A.D. Phys. Rev. B. 1999. № 59. P. 11914.
- 8. Murayama A., Hyomi K., Eickmann J., Falco C.F. // Phys. Rev. B. 1999. № 60, P. 15245.
- 9. Train C., Mégy R., Chappert C. // J. Magn. Magn. Mat. 1999. Vol. 202, № 321.
- 10. Schneider C.M. et. al. // Phys. Rev. Lett. 1990. Vol. 64, № 1059.
- 11. Huang F., Kief M.T., Mankey G.J., Willis R.F. Phys. Rev. B. 1994. Vol. 49, № 3962.
- 12. Zhang R., Willis R.F. // Phys. Rev. Lett. 2001. Vol. 86, № 2665.
- 13. Palasantzas G., Krim J. // Phys. Rev. B. 1993. Vol. 48, № 2873.
- 14. Palasantzas G. // Phys. Rev. B. 1993. Vol. 48, № 14472.