УДК 621.385.833

МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКОГО КОНТАКТА ЗОНД–ОБРАЗЕЦ

А. М. Дубравин

Институт механики металлополимерных систем им. В. А. Белого НАН Беларуси ул. Кирова 32a, г. Гомель, Беларусь

Проведено моделирование динамического контакта зонд-образец с одной степенью свободы с учетом действия как консервативных, так и диссипативных сил путем решения дифференциального уравнения второго порядка методом Рунге-Кутта четвертого порядка точности с использованием пакета MathLab 6.5. Проводился расчет максимальной силы взаимодействия за период колебаний консоли в режиме кратковременного контакта зонда с образцом в зависимости от: относительной амплитуды колебаний консоли, изгибной жесткости консоли, начальной амплитуды колебаний консоли, добротности зонда. Моделировалось изменение резонансной частоты системы в режиме автоколебаний консоли в зависимости от: начальной амплитуды колебаний консоли, расстояния между зондом и образцом и модуля упругости образца. Путем проведения полного факторного эксперимента были получены соотношение для оценки максимальной силы взаимодействия за период колебаний консоли между зондом и образцом в режиме кратковременного контакта, а также линейная зависимость изменения резонансной частоты колебаний зонда от расстояния зонд-образец для начальной амплитуды колебаний консоли ~10 нм в режиме автоколебаний зонда.

Введение

Динамическая АСМ является многообещающим методом не только с точки зрения получения информации о поверхности, но и как инструмент воздействия на нее (динамическая литография, манипулирование частицами на поверхности образца). Для данных приложений расчет силы взаимодействия между зондом и образцом является первостепенной задачей. Анализ литературных данных показал, что упрощенные методы описания динамического взаимодействия зонда с поверхностью, привлекающие своей простотой, оперируют усредненными параметрами и лишь в общих чертах объясняют механизм взаимодействия. Компьютерные модели, к сожалению, не позволяют на базе полученного результата прогнозировать поведение системы с учетом изменения одного из ее параметров, необходимо проведение дополнительного расчета [1]. Тем не менее, в большинстве случаев перед численным решением дифференциального уравнения от реальных параметров взаимодействия переходят к нормировочным [2], одним из которых является коэффициент 1/k_c. Данный подход позволяет использовать результат численного решения применительно к широкому спектру всевозможных вариантов изменения жесткости консоли и свойств поверхности при условии, что нормировочные параметры останутся постоянными.

Компьютерная модель динамического контакта представляет собой синтез существующих решений в области ACM и базируется на дифференциальном уравнении второго порядка с одной степенью свободы с учетом действия различ-

ных как по природе, так и по величине за период колебаний консоли консервативных и диссипативных сил $F(\dot{x}, x)$ взаимодействия зонд – образец (3–O). Уравнение решалось методом Рунге–Кутта четвертого порядка точности путем приведения к задаче Коши:

$$x = \omega^2 (A_d \cos \omega t - x) - \frac{\omega}{Q_0} x - F(x, x) \frac{\omega^2}{k_c}, \qquad (1)$$

где x, \dot{x}, \ddot{x} – перемещение, скорость и ускорение движения иглы зонда; ω – циклическая частота вынужденных колебаний консоли; A_d – амплитуда возбуждающих колебаний консоли; Q_0 – добротность консоли; k_c – изгибная жесткость консоли; $F(\dot{x}, x)$ – консервативные и диссипативные силы взаимодействия 3–О.

Синтезированная компьютерная модель [3] для описания консервативных сил во время контакта зонда с образцом позволяет использовать контактные модели Дерягина–Муллера–Топорова (ДМТ), Джонсона–Кендалла–Робертса (ДКР) и Бернхэм–Колтона–Поллока (БКП). Представленная компьютерная модель не описывает эффекты нанометрового масштаба, и приемлемой является точность ±1 нм.

Рис. 1. Механическое представление компьютерной модели

На рис. 1 представлен механический аналог компьютерной модели. Зонд моделировался с одной степенью свободы. Механическая модель зонда представляла собой параллельно соединенные пружину с жесткостью k_c , демпфер с коэффициентом демпфирования c_0 и последовательно соединенный с ними инерционный элемент m – сосредоточенная масса зонда с радиусом, равным радиусу закругления острия зонда R. Образец представлен в виде модели Кельвина–Фойта. До контакта 3–O ($x - Z_c < 0$, включая область I рис. 1) консервативные силы моделировались в виде Ван-дер-Ваальсовых сил притяжения [2] и выражены через силу адгезии (F_a) в точке равновесного межатомного расстояния (z_0):

$$F_{att} = F_a \frac{z_0^2}{\left(z_0 - (Z_c - x)\right)^2},$$
(2)

где Z_c – расстояние между зондом и образцом.

В дальнейшем при моделировании принималось, что данная точка соответствует нулевому сближению $\delta = x - Z_c = 0$, и при ненулевой величине силы адгезии подразумевается наличие сил притяжения F_{att} .

Во время контакта 3–О консервативные силы взаимодействия, возникающие за счет упругих элементов k_s и k_v , описывались контактной моделью ДМТ. Влияние подложки k_s в данной постановке задачи не учитывалось ($h = \infty$). В этой модели используются два коэффициента динамической вязкости (η_v , η_s) с учетом различного механизма потерь энергии до деформирования зондом образца и после начала деформирования. В выражение для силы диссипации входит радиус закругления иглы зонда [4, 5]. В частности, во время контакта 3–О (область II) диссипативная сила в объеме деформируемого материала

$$F_{dissV} = -\eta_V \sqrt{R} (x - Z_c)^{1/2} \dot{x} .$$
 (3)

Для обобщения результатов компьютерного моделирования и проведения полного факторного эксперимента использовались следующие коэффициенты: жесткости системы

$$K_{stiff} = \beta \frac{K \sqrt{R}}{k_c} \,, \tag{4}$$

потерь энергии

$$K_{loss} = \beta \frac{\eta \omega \sqrt{R}}{k_c} \,, \tag{5}$$

адгезии

$$K_{adh} = \frac{F_a}{A_d k_c},\tag{6}$$

где K – эффективный модуль упругости; $\beta = 3,1623 \text{ E}-5 \text{ м}^{1/2}$ – нормировочный коэффициент.

Модель создана в пакете MathLab 6.5. Шаг моделирования устанавливался равным 1e-8 с. При частоте колебаний 100 кГц один период колебаний консоли рассчитывался по 1000 точкам. Для расчета силы взаимодействия использовалось ускорение иглы зонда (х). За период колебаний сохраняли наибольшее значение силы взаимодействия. Для оценки амплитуды колебаний и фазового сдвига в колебаниях консоли включали данные изгиба консоли зонда (x). Амплитуду колебаний определяли как корень квадратный из суммы квадратов проекции вектора амплитуды на ортогональные оси координат, а фазу – как арктангенс отношения этих проекций. Скорость подвода зонда устанавливалась такой, чтобы обеспечивать на каждом шаге подвода квазиравновесное состояние системы, т. е. после подвода на один шаг к поверхности необходимо время, чтобы амплитуда колебаний уменьшилась и стабилизировалась на новом уровне либо за счет увеличения потерь энергии системы 3-О, либо за счет уменьшения подвода энергии к зонду в результате фазового сдвига в колебаниях консоли, либо за счет двух вышеприведенных факторов. Это время зависит в основном от добротности консоли зонда. Полученные данные выводили на экран и записывали в файл для дальнейшей обработки. Для проведения полного факторного эксперимента использовались следующие факторы и диапазоны их варьирования: K_{stiff} (0,01-10), A_d (0,1-1), Q (100 - 1000).

Компьютерная модель тестировалась путем сравнения экспериментальных и численно рассчитанных результатов, полученных в работе [1], с результатами, полученными при использовании данной модели.

В случае моделирования автоколебательного режима частота возбуждающих колебаний зонда изменялась так, чтобы фазовый сдвиг φ между колебаниями зонда консоли без взаимодействия 3–О и во время взаимодействия оставался равным нулю.

Обсуждение результатов

С помощью приведенной модели для режима кратковременного контакта 3–О установлена нелинейная зависимость максимальной силы взаимодействия от относительной амплитуды колебаний консоли, причем в случае отсутствия диссипативных сил взаимодействия эта зависимость приобретала явно немонотонный характер с максимумом при относительной амплитуде колебаний $A/A_0 = 0.5$ (рис. 2, а).

Рис. 2. Зависимость от относительной амплитуды колебаний A/A_0 максимальной силы взаимодействия 3–О за период колебаний консоли (*a*) и фазового сдвига в колебаниях консоли (*б*)

Установлено также, что сила взаимодействия 3–О может быть как силой притяжения, так и силой отталкивания. Критерием является отношение между максимальной силой взаимодействия 3–О за период колебаний консоли (F_{max}) и силой притяжения 3–О в момент касания зонда поверхности (F_a). Если для поддержания заданной относительной амплитуды колебаний (A/A_0) требуется бо́льшая сила взаимодействия (F_{max}), чем сила притяжения 3–О, существующая в момент касания зондом поверхности (F_a), эта сила является упругой силой отталкивания (дуга 1), в противном случае – силой притяжения (дуга 2).

Путем проведения полного факторного численного эксперимента в случае преобладающего влияния консервативных сил взаимодействия (рис. 2, а) получено выражение для оценки максимальной силы взаимодействия 3–О за период колебаний консоли при $A/A_0 = 0.5$:

$$F_{\max} = \alpha \frac{k_c A_0}{Q_0} = \alpha k_c A_d \,. \tag{7}$$

Значение безразмерного коэффициента а варьируется от 10 до 30 и зависит от радиуса закругления острия зонда, эффективного модуля упругости и добротности консоли зонда:

$$\alpha \approx 7R^{*\frac{1}{8}}K^{*\frac{1}{4}} \left(\frac{Q_0}{100}\right)^{\frac{1}{2}},\tag{8}$$

где $R^* = \frac{10^9 R}{M}$ – относительный радиус закругления острия иглы зонда; $10^{-9} K$ K^*

$$T = \frac{10^{10} \text{ н}}{10^{10}}$$
 – относительный эффективный модуль упругости.

Многочисленные результаты компьютерного моделирования свидетельствовали о том, что величина фазового сдвига зависит от соотношения между консервативными и диссипативными силами в системе, в общем случае – от вязкоупругих свойств образца и его поверхностной энергии. Таким образом, локальное изменение модуля упругости образца, конечно же, приводит к фазовому сдвигу в колебаниях консоли, однако говорить о том, что изменение фазового сдвига в первую очередь связано с локальным модулем упругости на основании компьютерного моделирования, нельзя. В равной мере это изменение может быть вызвано также локальным изменением динамической вязкости или поверхностной энергии. В случае моделирования взаимодействия зонда с поверхностью "гипотетического" образца, у которого коэффициент динамической вязкости равен нулю, фазовый сдвиг не зависел от модуля упругости образца и его величина определялась лишь относительной амплитудой колебаний консоли. Знак фазового сдвига зависел от того, какие силы преобладают при взаимодействии 3-О: силы притяжения или отталкивания (рис. 2, б).

В режиме автоколебаний зонда при входных параметрах системы, описанных в работе [6], получена зависимость изменения частоты колебаний зонда от расстояния между зондом и образцом, рассчитанная аналитически в той же работе:

$$\Delta \omega = \alpha \sqrt{\delta \omega_0}, \tag{9}$$

где α – коэффициент пропорциональности, зависящий от модуля упругости образца.

Тем не менее при увеличении амплитуды колебаний консоли с 1 до 10 нм эта зависимость приобретала линейный характер:

$$\Delta \omega = \alpha \delta \omega_0. \tag{10}$$

Для проверки результатов численного моделирования проведен натурный эксперимент с использованием жесткого зонда ($k_c \sim 10^4 - 10^5$ H/м), работающего в автоколебательном режиме с начальной амплитудой колебаний порядка 10 нм. В качестве тестовых образцов использовались кремний, сталь и полистирол.

Зависимость изменения частоты от расстояния 3-О во всех случаях носила линейный характер, что подтверждает результаты компьютерного моделирования (рис. 3), причем коэффициент α (угол наклона кривых на графике) зависел от материала образца.

Выводы

Путем компьютерного моделирования динамического кратковременного контакта 3-О и проведения полного факторного эксперимента получено соотноше-

ние для оценки максимальной силы взаимодействия за период колебаний консоли зонда при относительной амплитуде колебаний консоли $A/A_0 = 0,5$. Результаты хорошо согласуются с литературными данными, объясняют механизм бистабильного состояния системы, а также основное достоинство режима кратковременного контакта, которое заключается в том, что сила взаимодействия 3–О в Q/α раз меньше (по крайней мере, в 10 раз), чем сила, отрывающая зонд от поверхности при $A/A_0 = 0,5$.

Рис. 3. Кривые спектроскопии изменения частоты зонда в режиме автогенерации от расстояния 3-О. Образец: *1* – кремний (α = 5.72 усл. ед.); *2* – сталь (α = 3.23 усл. ед.); *3* – полистирол (α = 0.42 усл. ед.)

В случае использования жесткого зонда ($k_c \sim 10^4 - 10^5$ H/м), работающего в режиме автоколебаний, показано, что зависимость изменения частоты колебаний консоли от сближения между зондом и образцом может носить линейный характер, когда амплитуда колебаний консоли ~ 10 нм.

Литература

- 1. Phase imaging: Deep or superficial? / O. Behrend, L. Odoni, J. Loubert, N. Burnham // Appl. Phys. Lett. 1999. Vol. 75. P. 2551.
- 2. How does a tip tap? / N. Burnham, O. Behrend, F. Oulevey et al. // Nanotechnology. 1997. Vol. 8. P. 67.
- 3. Дубравин А. М. Выбор оптимальных режимов СЗМ и интерпретация фазового изображения применительно к поверхностям трения // Трение и износ. 2004. Т. 25, № 6. С.612–623.
- 4. Tamayo J., Garcia R. Deformation, contact time, and phase contrast in tapping mode scanning force microscopy // Langmuir. 1996. Vol. 12. P. 4430.
- 5. Wang L. The role of damping in phase imaging in tapping mode atomic force microscopy // Surf. Sci. 1999. Vol. 429. P. 178.
- Гоголинский К. В., Усеинов А. С. Измерение модуля упругости сверхтвердых материалов с помощью сканирующего силового микроскопа "НАНОСКАН" // 6-й Белорусский семинар по сканирующей зондовой микроскопии. Минск, 2004. С. 47–53.

